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Abstract—Machine learning in biomedicine is reliant on the
availability of large, high-quality data sets. These corpora are
used for training statistical or deep learning -based models that
can be validated against other data sets and ultimately used to
guide decisions. The quality of these data sets is an essential
component of the quality of the models and their decisions.
Thus, identifying and inspecting outlier data is critical for
evaluating, curating, and using biomedical data sets. Many
techniques are available to look for outlier data, but it is not
clear how to evaluate the impact on highly complex deep learn-
ing methods. In this paper, we use deep learning ensembles and
workflows to construct a system for automatically identifying
data subsets that have a large impact on the trained models.
These effects can be quantified and presented to the user for
further inspection, which could improve data quality overall.
We then present results from running this method on the near-
exascale Summit supercomputer.

1. Introduction

Biomedical research is entering a new phase in which
highly automated learning methods may be able to quickly
and accurately produce highly specific predictions, infer-
ences, and insights. These capabilities have the potential
to greatly accelerate the state of the field as well as have
direct impact in clinical settings in diagnosis and treatment.
Advanced learning techniques, however, are limited by the
quality of the input training data available to them. Contin-
ued advancement in this area will rely on the availability of
large, high-quality data sets. Ideally, similar data sets could
be ingested by both traditional/statistical and/or emerging
deep learning -based models. These techniques can then
be cross-validated against each other as well as against
other data sets. Such careful cross-validation is required
before these methods can be allowed to guide decisions.
Obtaining, evaluating, and curating large data sets is thus
a critical aspect of modern approaches in machine learning
for biomedicine. Thus, there is a strong need for automated

techniques to identify and inspect outliers or anomalous
data.

Many techniques are available to look for outlier data,
but it is not clear how to evaluate the impact on highly
complex deep learning methods. In this paper, we use deep
learning ensembles and workflows to construct a system
for automatically identifying data subsets that have a large
impact on the trained models. These effects can be quantified
and presented to the user for further inspection, which could
improve data quality overall. We then present results from
running this method on the near-exascale Summit supercom-
puter.

A variety of methods are available to identify out-
liers and anomalies, ranging from standard statistical meth-
ods to those which utilize ML methodologies themselves.
Among the latter Isolation Forest [1] and Extended Isolation
Forest [2] methods seem to be the most robust for the
multivariate data sets we are concerned with. Within the
context of the machine learning in cancer, the nature of
the anomalies varies across the problem sets. Within the
studies based on drug response data, there are likely to be
both true anomalies (drugs which are unusually effective or
ineffective, cancers which are unusually resistant) as well as
noise due to experimental conditions or other confounding
factors. In studies where the data derives from numerical
simulations, what appear as anomalies could be real rare
events or results of numerical errors. In clinical text analysis,
the problem consists of multi-task classification of reports
which may suffer from various forms of noise due to missing
or incorrect labels, missing data or poor transcription.

In this work, we consider the problem of predicting
tumor dose response across multiple data sources. Uno ( Fig-
ure 1) uses multiple cell RNA and drug response data sets,
and it is desirable to automatically discover which data sets
are most beneficial to automated drug response prediction
and which are detrimental. Information about either case
could be useful to researchers. The beneficial cases could
point to experimental conditions of broad applicability to a
wide range of cancers and patients, and could be used to
generate smaller data sets for rapid, prototype studies. The



detrimental cases could indicate at least two possibilities: 1)
that a learning approach lacks the capability to assimilate
a certain class of data, or 2) that a subset of the data is
anomalous or erroneous, necessitating data correction.

The approach taken here is a ‘“high-bypass learning”
approach, in which machine learning is not used primarily
to make predictions, but rather to produce statistics about
learning that reveal information about the underlying data.
We apply this method to the analysis of experimental cancer
data.

The remainder of this paper is organized as follows.
First, we describe more detail about the machine learning
application of interest and its data. Second, we describe the
data analysis we desire to perform and the computing in-
frastructure used to accomplish it. Third, we present results
from performing the analysis under a range of conditions.
Finally, we offer conclusions and opportunities for future
work.

2. Methods

In this section we describe the neural network -based
cancer problem of interest and our approach using a novel
training and data analysis workflow.

2.1. Uno: A neural network for drug response
prediction

A highly desirable goal in the application of deep learn-
ing is to enable cross-comparison of cancer studies and
integrate results into a unified drug response model. The
overall idea is to train a neural network (NN) on a corpus
of tumor dose responses based on given combinations of
cell RNA sequences, drug descriptors, and drug fingerprints.
The model can then provide predictions for combinations
of RNA sequences and drugs that it was not trained on.
The goal of this paper is to study the effects of training
ensembles of on different subsets of the data and use the
trained NN to make predictions on the held-out data. By
incrementally training on different subsets as part of a con-
trolled workflow, various observations may be made about
the components of the data.

The Uno benchmark [3] integrates experimental cancer
data from 2.5 million samples across six research centers to
examine study biases and to build a unified drug response
model. The associated manually designed DNN has four
input layers: a cell RNA sequence layer, a dose layer, a
drug descriptor layer, and a drug fingerprints layer. It has
three feature-encoding submodels for cell RNA sequence,
drug descriptor, and drug fingerprints. Each submodel is
composed of three hidden layers. The last layer for each
of the submodels is connected to the concatenation layer
along with the dose layer. This is connected to three hidden
layers. The scalar output layer is used to predict tumor dose.
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Figure 1: Uno neural network architecture.

2.2. The Uno data set

Uno training data consists of a composite data set that
can be constructed in multiple ways. Multiple user-selected
data sets can be dynamically assembled before training by
selecting from drug response, gene expression, and molec-
ular descriptors of interest; all from separate studies.

For this study, a master dataset was created. The drug
response, gene expression and molecular descriptor datasets
were joined to create a single data frame called “Top21”
consisting of 529,940 rows and 6,213 columns, which will
be used for training and validation. (This file is available for
download.) Samples are defined by the composite (cell id,
drug id), which map to a label, the tumor dose response.

2.3. The Sublearning Workflow

In this section, we describe the workflow used to train on
partial subsets of the overall data and integrate statistics from
the trained models to produce insight into the underlying
data.

Conceptually, the goal of this workflow is to train on
“most” of the data set, with some small portion left out.
Then, in subsequent “stages”, additional data is added to
the total training set (without removing any data from
the training set). The previous, partially-trained model is
restarted and thus is expected to quickly incorporate the new
data. This process is depicted in Figure 2. The x and y axes
could represent cell lines and candidate drugs, where the
data is the drug response. Thus, gray squares consist of cell
line x drug response values that are used for training in that
stage, where white squares are left out. Each stage consists
of all possible subsets; thus Stage 1 trains 4 different models
on 4 different training sets, Stage 2 trains 16 models (based
on the models from Stage 1), and so on.

We define N as the number of possible subsets at each
stage, and S as the number of stages. In the figure, N=4
and S=3. The workflow is not specific to our Uno-based
application and could be used to train on any model data
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Figure 2: Data subsetting conceptualization. The subsets of
training data shown in green are added to the total training
data set (gray) at each stage (validation data is left out).

that can be subdivided. In practice, we used N=4 and S=5,
thus training 1,364 models in each workflow. Each potential
model is considered a “node” in our workflow.

There is thus an exponential number of models to be
trained in the number of stages, however, the later models
are only adding a small amount of data and thus are expected
to train very quickly.

The contents of the Top21 data set may be divided as
follows. At each node in the workflow, a training set is
created by starting with the training set of its parent (or of
the empty set for Stage 1). An additional fraction of the
parental validation set is provided to each child node of
the parent. This additional data is divided into two subsets,
with one subset being added to the training set and the other
subset becoming the validation set at that node. The data is
divided based on cell id only, not by drug. It is important to
note that each node training set is different, and members
of the validation set are not in the training set for the node
or in the training set for any ancestor node. A diagram of
this process is shown in Figure 3.
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Figure 3: DAG diagram of learning dependencies in Sub-
learning workflow. (See Figure 2 for context.)

At each stage transition, the parent NN weights are
passed to the child before training is restarted on the new
data subset. Thus, a large number of “trajectories” through
the training data are made, each resulting in a leaf node
in the final stage. The object is to obtain training statistics
for each node in the workflow and compare with its parent.
A variety of measurements are made using the computing
infrastructure described in the following.

2.4. Computing infrastructure

In this section we describe the computing framework
used in this work. The Cancer Deep Learning Environment
(CANDLE) is an open framework for rapid development,
prototyping, and scaling deep learning applications on high-
performance computing (HPC) systems. CANDLE was ini-
tially developed to support a focused set of three pilot
applications jointly developed by cancer researchers and
deep learning / HPC experts, but is now generalizable to a
wide range of use cases. It is designed to ease or automate
several aspects of the deep learning applications develop-
ment process. CANDLE runs on systems from individual
laptops to OLCF Summit, and enables researchers to scale
application workflows to the largest possible scale.

Machine learning (ML) has the capability to trans-
form many scientific problems. In response to the grow-
ing power of ML techniques and the increasing available
computing power at large scale computing facilities, the
U.S. Department of Energy Exascale Computing Project
(ECP) launched the Cancer Distributed Learning Environ-
ment (CANDLE). CANDLE is developing a suite of soft-
ware to support scalable deep learning on DOE supercom-
puting resources. While the CANDLE project is explicitly
aimed at supporting deep learning in the three cancer pilot
projects in the near-term, its longer-term goal is to support
a wide variety of deep learning applications across DOE
science domains.

Our system, CANDLE/Supervisor, is a workflow appli-
cation framework used to develop multiple deep learning
workflows. It is a Supervisor in the sense that it man-
ages the execution of many (thousands) of concurrent, sub-
ordinate deep learning training or inference runs. CAN-
DLE/Supervisor was designed to run a wide range of model
types, including Keras, TensorFlow, and PyTorch. It is also
generic with respect to the application area. For example,
CANDLE runs models in RNA expression data, molecular
dynamics data, and clinical text data.

Key components of the CANDLE architecture are shown
in Figure 4. A handful of top-level workflows have been
developed by the CANDLE team, but these can easily be
modified or extended. These include:

Hyperparameter
Search

Uncertainty
Quantification

Training Data
Analysis

| Workflow Orchestration

| Data Management

| Deep Learning Applications

Utilities: Hyperparameters, Data manipulation,
Restart, Callbacks, Analysis

Figure 4: CANDLE component architecture.



2.5. Model state transfer for sublearning

As mentioned in Section 2.3, at each stage transition, the
parent DNN weights are passed to the child before training is
restarted on the new data subset. However, it is important to
note that each child is an independent learning instance that
may run on a different device (GPU) on the same compute
node or even a different compute node altogether. In this
case, the problem of efficient transfer of the model state
becomes an important, because it affects the performance
and scalability of the entire sublearning workflow.

A naive solution to this problem would be to checkpoint
the state of the model on the parent and then restart multiple
children from the same checkpoint. However, such a solution
has several disadvantages. First, it is important to note that
the parent does not necessarily have to be killed: instead,
it could continue as one of the children, which effectively
reduces the overhead of instantiating multiple children from
the same checkpoint. Second, the parent does not necessarily
have to be stopped for the duration of checkpointing: in-
stead, asynchronous checkpointing techniques that take ad-
vantage of fine-grain parallelism as implemented in modern
deep learning runtimes (e.g., Tensorflow) can be used to
mask the checkpointing overhead.

Our previous work DeepFreeze [4] illustrates such tech-
niques based on the idea of augmenting the execution graph
with fine-grain tensor copy operations, which can run in
parallel with gradient computations and weight updates in-
volving different layers during the back-propagation. Using
this approach, a full checkpoint of the DNN model can
be produced in-memory or on local storage with minimal
impact on the learning performance, which can then be again
transferred asynchronously to the memory of a different
GPU and/or remotely to a different compute node. Third,
even if the parent can continue as a child with minimal
overhead, asynchronous checkpointing may cause signifi-
cant overhead in instantiating the other children, because
they need to wait until the checkpoint becomes available.

To mitigate this issue, the notion of cloning the DNN
model can be used instead: unlike checkpointing, it involves
the notion of replicating the DNN model state such that
three objectives are simultaneously addressed: (1) introduce
as little runtime overhead as possible on the initial training
instance; (2) minimize the amount of time necessary to
construct the replicated training instance (to avoid wasting
core hours; (3) continue training on the replicated instance
as early as possible (to finish the work as early as possible).
By comparison, checkpointing addresses only objective (1),
therefore missing the opportunity to co-optimize the capture
of the DNN model state and its reconstruction as one or
many independent replicas.

As illustrated in our previous work DeepClone [5],
the augmentation techniques for the execution graph dur-
ing the back-propagation introduced by DeepFreeze can
be extended with additional techniques such as zero-copy
transfers of tensors and optimized reconstruction that takes
into account the ordering needed for the forward pass. Using
this approach, the sublearning workflow can be optimized

to effectively use cloning as a “fork™ primitive that branches
off in alternative directions with minimal overhead.

Such considerations have inspired new data models that
address the data management requirements of deep learn-
ing. In this context, we are exploring the notion of data
states [6], which are intermediate snapshots of datasets (e.g.,
DNN models) that can be either captured or cloned asyn-
chronously at scale, while adopting the FAIR principles [7]
(findable, accessible, interoperable, reusable) in form of
a lineage, which makes it easy to navigate through their
evolution and/or search for interesting snapshots that can be
reused.

2.6. Hyperparameter search

This is the process of refining the architecture of the
underlying neural network in the deep learning application.
Given the basic design of a neural network, there are many
flexible parameters that can be tuned to produce a particular
result, such as accuracy or performance. These are typi-
cally optimized using generic optimization routines. Such
searches produce a great many (thousands) of parallel trial
training cycles, which run for minutes to hours.

The simplest, though most costly, methods for hyperpa-
rameter optimization include exhaustive space search (the
brute force method), simple gradient descent, multiple gra-
dient descent, and random search. Though these search algo-
rithms can be tuned to execute quickly (random search) or to
find the optimal solution (exhaustive search), the marginal
optimization with respect to the utilized resources is not
efficient for problems with 109 or greater reasonable discrete
parameter combinations. There are two primary drawbacks
to utilizing an a priori user-specified set of discrete hy-
perparameters for reducing loss: 1) it requires the user to
make assumptions concerning topological efficiencies and
efficacies and 2) it is limited to a small, finite set of models
(i.e., it is forcing a complex algorithm into constrained
bounds). By including effective reductions possible using
gradient descent, we may gain one or two orders of mag-
nitude of search space, however, this is still well below the
1021 complexity that is possible in the current CANDLE
workflows.

2.7. Uncertainty quantification (UQ)

This is the analysis of the sensitivity of the deep learn-
ing method to small changes in the training data or other
quantities in the neural network. UQ provides estimates on
how robust the overall method is in the presence of data
errors and other variability. UQ studies also produce a great
many (thousands) trial training and inferencing runs , which
are then analysed using statistical techniques.

2.8. Training data analysis

This is the analysis of the given training data sets for
their applicability to target application problems, general-
izability across problems (transfer learning), or unexpected



negative impacts. Training data analysis is performed by
training neural networks on various subsets of the whole
training data corpus, then performing cross-comparisons of
the neural networks produced, or applying transfer learning
to so far unused parts of the training data corpus or other
problems entirely. Since training data can be broken up
and reordered in a great many ways, this methodology also
produces a great many (thousands) of training cycles.

2.9. Supporting infrastructure

Under the top-level workflows, several supporting com-
ponents are provided. The Workflow Orchestration com-
ponent is based on the Swift/T workflow system [8],
[9], a previously developed MPI-based dataflow program-
ming language and runtime. The Data Management com-
ponent includes capabilities for data input and output, data
caching [10], and metadata storage in databases. The Deep
Learning Applications are somewhat independent of CAN-
DLE as they are developed by focused applications teams,
but they are built around common abstractions and APIs
designed for integration into CANDLE workflows. These
include options for handling hyperparameters formatted in
a common way. As most of our applications are based on
Keras/Tensorflow [11], CANDLE provides wrappers and
simplifications for managing neural network weights data,
input and output tools, features to manage restartability and
callbacks (a Keras feature to execute Python code dynami-
cally during neural network training), and so on. CANDLE
also includes an analysis library for evaluating UQ, as well
as support for codes written in PyTorch.

To execute a training run, the workflow produces a list
of parameter tuples that are encoded as arguments to a
Python-based wrapper script. These wrapper scripts are the
interfaces to the various CANDLE Benchmark applications
or external user applications. The parameters are encoded
in JavaScript Object Notation (JSON) format which can be
easily converted by the Python wrapper script into a Python
dictionary, from which a CANDLE Benchmark application
can retrieve the parameter values. These scripts are run
concurrently across the available nodes of the Swift/T al-
location, typically one per node. Thus, the Benchmark has
access to all the resources on the node. The Benchmarks
are Python programs that implement the application-level
logic of the cancer problem in question. The are coded
(using the CANDLE common library protocol) to enable
the hyperparameters to be inferred from a suitable default
model file, or to be overwritten from the command line.
It is this construction that allows the parameter tuples to
be easily ingested by the respective Benchmarks, and use a
standardized interface developed as part of the project.

The result of a wrapper execution is a performance
measure on the parameter tuple p, typically the validation
loss. Other metrics could be used, including training time
or some combination thereof. These are fed back to the
workflow to produce additional parameters to sample. The
results are also written to a Metadata Store, which contains
information about the wrapper execution. The Metadata

Store records which parameter tuples have already been run,
enabling efficient workflow restarts. Thus, a progress history
is available for each learning trial run, as well as for the
overall optimization workflow.

At execution time, workflow configuration, control, and
model runs are clearly separated as shown in Figure 5.
In this figure, user-defined components are shown in blue,
and static Supervisor components are shown in white. The
workflow starts on the login node with a user provided test
script that sets up the run. This script simply defines the
data to be used and the other configurations. The system
configuration (cfg sys) configures the system settings, such
as the queue, and project to be used, number of compute
nodes, and requested wall time. These settings are abstracted
over the many schedulers supported by our system, which
includes all large DOE systems and many others (LSF,
SLURM, PBS, Cobalt, etc.). The parameters configuration
(cfg params) configures the parameter space used to start
the run, for example, these could define the hyperparameter
space to be searched by a hyperparameter optimization
workflow. Site settings are selected from an extensible li-
brary containing systems Summit, Theta, Cori, and others.
At run time, the workflow launches inside a Workflow
Shell that loads appropriate libraries for the system and
configures the Swift/T system, which manages workflow
progress. Swift/T launches the workflow on the compute
nodes using the system scheduler tools (e.g., gsub).

test L | workflow.swift |
=
cfg sys | Model Shell _|
cfg params Site settings || |=
Site settings | Model Runner d
| Workflow shell | DL App (Python) | |5
Keras / TensorFlow | |4
| Swift/T Launcher | Other DL Engines
| gsub, etc. | L J|
‘ (
(LX)
Login Node Compute Nodes

Figure 5: Distributed execution of workflow control and
deep learning models in CANDLE/Supervisor.

The workflow.swift script prescribes the logic of the
workflow. The Supervisor system contains the workflows
described in this paper, and they can be extended for other
problems, as they are only 100-200 lines each. Compute
node execution starts with the Swift/T workers launched by
the scheduler. For each task in the workflow, these launch
a Model Shell which simply loads library configurations
to run Python and the underlying deep learning engine.
These receive the JSON parameter string from the workflow
and pass them to a child Python process using the Model
Runner, a reusable Python application that handles the input



and output parameters of the deep learning run. The Model
Runner invokes the user deep learning application (DL App),
which could be a CANDLE Benchmark or some other
deep learning application. This then typically invokes a
deep learning engine (DL Engine) that uses the compute
resources on the node to perform the deep learning operation
of interest (training or inferencing).

2.10. The Sublearning workflow implementation

The Sublearning workflow is implemented as a Swift/T
workflow. This allowed for a high-level workflow descrip-
tion that constructs the data dependencies from one node to
its children, as each child must wait for its parent to com-
plete training so that training may resume on a larger data
set. The Swift/T workflow is responsible for synchronizing
on these dependencies and concurrently distributing work to
the compute nodes of a large parallel computer. These data
dependencies are expressed using the Swift/T code fragment
shown in Figure 6.

1 /+%  RUN STAGE: A recursive function that manages

2 the stage dependencies

3 */

4 (void v) run_stage(int N, int S, string node,
5 int stage, void block)
6| 1

7 // Run the model for this workflow node

8 void parent = run_single(node, stage, block);
9

10 if (stage < S)

11

12 // Recurse to the child stages

13 foreach id_child in [1:N] // parallel loop
14

15 run_stage (N, S, node+"."+id_child,

16 stage+l, parent);

17 }

18 }

19 }

20

21 /+% RUN SINGLE: Set up and run a single model

22 via candle_ob7j ()

23 */

24 (void v) run_single (string node, int stage, void parent)
25 {

26 if (stage == 0)

27 {

28 v = propagate();

29 }

30 else

31 {

32 json_fragment = make_json_fragment (node, stage);
33 json = "{\"node\": \"%s\", %s}" %

34 (node, Jjson_fragment);

35 wait (parent) // waits for parent data

36 {

37 // Run the model

38 obj_result = candle_obj(json, node);
39

40 }

41 }

Figure 6: Distributed execution of workflow control and
deep learning models in CANDLE/Supervisor.

As shown, function run_stage () represents one node
of the workflow graph. It performs a single training run for
that node and recursively calls run_stage () for each

child node. Following Swift/T semantics, these steps are
concurrent; thus, a synchronization variable called parent
is passed to the child nodes. The string node represents a
string identifier for that node, for example, node “1.2” would
have children “1.2.17, “1.2.2”, “1.2.3”, and “1.2.4”.

Function run_single () runs a single NN training
run, heavily relying on Supervisor utilities and libraries to
run the model. It makes a JSON fragment (some string
manipulation code not shown) based on the current node and
stage, and invokes the candle_ob3j () function (CAN-
DLE objective function) to run the model. Typical runs
for this paper used 128 nodes of Summit, each running
candle_obj () for the bulk of the time.

Results from each candle_obj () run are stored in a
directory with the node name containing the inputs, output
logs, stored NN weights, timing data, and statistics produced
during training. These are used to produce the experimental
results described in the following.

3. Experimental results

We applied the CANDLE system to the problem of
identifying anomalous data in a cell line x drug pair data
set for the Uno model.

All results in this paper were obtained on Summit, the
IBM PowerPC and NVIDIA Volta -based supercomputer at
Oak Ridge National Laboratory. Summit has 200 petaflops
at double precision, across 4,608 nodes, each with two
POWER CPUs and 6 V100 GPUs.

3.1. Motivating example
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Figure 7: Demonstration of diverse loss behavior across
workflow trajectories.

First, we illustrate the problem of running the Sub-
learning ensemble. An initial run using the workflow above
produces the validation loss (val_loss) behavior shown
in Figure 7.

As shown, a small number of runs on early data sets
produce relatively good val_loss results 0.01. Then at
each subsequent stage as more data is added, and more



Strategy | Description

F-20 Flat-20: Simply train for 20 epochs

F-10 Flat-10: Simply train for 10 epochs

LINE Linear: Train for a linearly decreasing number of epochs,
starting from 20

SQRT Square root: Train for a number of epochs equal to 20 /
sqrt(stage)

EXP2 Exponential: Train for a number of epochs equal to 20 /
2(s(age—1)

TABLE 1: Epoch strategies used in the Sublearning work-
flow study.

trajectories are created, some trajectories improve in accu-
racy, some become less accurate, and some become very
inaccurate. Our goal is to find the data subsets that produce
the wild inaccuracies as these may indicate problems or
features in the underlying data.

We ran the Sublearning workflow in multiple modes,
each of which was a different maximum epoch count strat-
egy for each stage. The strategies used are shown in Table 1.

Each strategy was run using the Keras EarlyStopping
feature to stop training if the validation loss does not in-
crease over some consecutive number of epochs; we set this
value to 3. This is an aggressive setting. This was enabled
to allow the workflow to make progress rapidly and move
on to the next stage if a particular stage stalled in making
progress, on the assumption that errors can be corrected at
the next stage while training with additional data.

3.2. Early stopping results

To measure the impact of our early stopping strategy,
we recorded how many epochs were actually run. For early
stopping results, we first report the number of training
runs within each stage that stopped early. This is shown
in Figure 8.
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Figure 8: Fraction of early stops by stage.

As shown, all 100% stage 1 training cycles stop early-
no training run makes it to the full 20 or 10 epochs. As
the stages progress, however, some runs do complete (run
to the maximum epoch). In the LINE and EXP2 modes,
many or all runs complete and do not stop early, as the
maximum epoch is very small. This illustrates that the
various epoch strategies do have a strong effect on training
time. The Flat approaches generally stop early as 20 or even
10 epochs is more than enough training. The question is
whether stopping early affects the overall training error in
our workflow structure, which is addressed in the following
measurements.

3.3. Number of epochs trained

In this experiment, we report the number of epochs
trained by stage. For each run, early stopping was enabled,
and we record how many epochs were actually used to do
the training before early stopping or the maximum epoch
was reached. The average actual epoch count was plotted
for each stage in Figure 9.
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Figure 9: Actual number of epochs trained by stage.

As shown in the figure, there is a range of responses to
the maximum epoch strategies. There appears to be a strong
tendency for all stages to only require around 6 epochs
of training. LINE and EXP2 are constrained to train for a
smaller number of epochs at the later stages, so we measure
the impact on val_loss in the following experiments.

3.4. Validation loss by stage

In this experiment, we consider the change in accuracy
under the varying epoch strategies. For each strategy, for
each stage, we sorted the val_loss results for all tra-
jectories, and report the percentiles 99%, 75%, 50%, 25%,
and 10%, where higher percentiles indicate higher accuracy
(lower val_loss). Results are shown in Figure 10.
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Figure 10: Validation loss results by epoch strategy and workflow stage.

As shown in the table, val_loss is relatively stable
across the epochs strategies. Typical accuracies for each
percentile level continue to increase as new data is pro-
vided from stage 2 to the final stage. This indicates that
generally speaking there is additional learning to be done at
each stage, but aggressively reducing the number of epochs
used at later stages does not cause a significant increase
in val_loss. This indicates that generally speaking the
additional data is assimilated well without inducing errors
in the NN.

3.5. Training cost to achieve best accuracy

In this experiment, we investigate the overall results of
the training workflow. We selected the most accurate stage
5 runs from each workflow. We report the wall clock time
in training hours used to run that trajectory (the final node
and its parents, not all nodes in the workflow). We also
report the cumulative training steps reported by TensorFlow;
the number of steps is based on the size of the training
data (which increases by stage as the Sublearning workflow
increases the data set size). We also report the validation
loss.

As shown in Table 2, the aggressive EXP2 epoch reduc-
tion strategy produces very good val_loss results, and by

Mode Training hours | Training steps | Validation loss
(per trajectory) (cumulative)

F-20 221 165,340 0.000785

F-10 2.17 66,188 0.000655

LINE 2.49 66,188 0.000650

SQRT 2.65 148,923 0.000652

EXP2 1.46 16,534 0.000568

TABLE 2: Statistics on training time, steps, and resulting
loss.

saving on epochs in the later stages, provides a reduction in
the training time and steps needed. This justifies the use of
aggressively limiting training time.

3.6. Finding outlier nodes

In this experiment, we apply the previously vetted
workflow modes to the problem of finding data subsets
that decrease the NN accuracy, measured by increasing
val_loss. For each epoch strategy, within each workflow
stage, we counted the number of nodes that increased in
val_loss with respect to the previous stage. The results
are shown in Figure 11.

As shown, nearly all stage 2 results show an increase
in val_loss, an interesting result. This indicates that the



percentage
w S w1 [} N o] O
o o o o o o o
]

val_loss increase
N
o

-
o

o

stage

|i F-20 -®-F-10 LINE SQRT -= EXP2

Figure 11: Fraction of subsets that causes an increase in
validation loss by stage.

large addition of stage 2 data generally reduces accuracy,
and that much more training is needed after this stage. By
the final stage, however, the increase rate has leveled off to
the range 36.0% - 38.1% for all modes.

3.7. Measuring the level of inaccuracy
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Figure 12: “Increase delta” for validation loss by stage.

In this experiment, we desire to measure the amount of
inaccuracy (not just the count). For the workflow nodes that
increased in val_loss, we report the average amount of
increase with respect to the average val_loss for that
workflow stage, here called the “increase delta”. Results are
shown in Figure 12.

As shown, the average increase is under 50%, indicating
that val_loss increases are generally modest when they
occur. Of particular interest is the F-20 epoch strategy, which
produces the highest increase delta at stage 2, but the lowest
at stage 3. Thus it appears that running for more epochs
allows the NNs to recover accuracy after the large data
addition at stage 2.

3.8. Finding the largest error increases
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Figure 13: “Outlier level” for validation loss by stage.

In our last experiment, we desire to use the results above
to find the workflow nodes with the greatest val_loss
increases (reductions in accuracy). For each workflow node
that increases in val_loss, we sorted that node with
respect to that workflow mode. The node represents the
value of its val_loss increase divided by the val_loss
for the parent of that node, here called the “outlier level”.
We then plotted the nodes cumulatively to demonstrate the
distribution of these increases. The result is shown in Fig-
ure 13.

As shown, most runs have a relatively low outlier level.
Of the 6,820 training runs across the 5 workflow modes,
only 899 have an outlier level greater than 1 (13.2%) and
489 have an outlier level greater than 2 (7.2%). This greatly
reduces the amount of work that needs to be done to find
interesting data subsets.

In theory, one could continue this process until only a
single training data record is removed from each model, thus
isolating individual records for their error effect. In practice,
we have run the cancer data set used here to stage 6, but
the data becomes sparse at this stage and does not provide
results that are generally interpretable.

3.9. Workflow performance

As a demonstration of the utilization of the Summit sys-
tem under this workflow, Figure 14 shows the load produced
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Figure 14: Compute load over time on Summit.

by a typical sublearning workflow run. This shows a 264-
node run toward the end of a workflow. As shown, the work-
flow system rapidly fills the allocation with model training
execution, although some gaps are visible as training tasks
exit and are replaced. Toward the end, as the workflow runs
out of work to perform, utilization drops. Swift/T workflow
features could be used to detect the load drop and exit early,
but these were not enabled for this run.

A typical workflow campaign involves multiple
restarts as wall-clock limits are encountered. The
CANDLE/Supervisor restart capabilities (§2.9) are used to
restart workflows efficiently at the epoch checkpoint level,
minimizing wasted GPU time.

4. Conclusion

Finding erroneous or interesting samples in large data
sets is an important problem in deep learning, and is crit-
ically important in biomedicine, both to prevent inaccurate
results and to accelerate discovery. In this paper, we showed
how large ensembles of NN training runs can be used to col-
lect statistics about training that can be used to gain insight
into the underlying data. In this paper, we described a new
workflow structure to address this problem and the imple-
mentation of the workflow in some detail. We showed how
our solution fits into CANDLE/Supervisor, a framework for
rapidly developing deep learning workflows for cancer and
other applications, and applied the technique to a cancer
benchmark, Uno, that predicts tumor dose response across
a range of studies. The approach isolates a small number of
cell lines that contributed the most to introducing error in
the NN training and could be prioritized for further study.
Additionally, our experiments demonstrated that aggressive
approaches to epoch strategies produce useful results.

In future work, we plan to apply this approach to other
scientific problems in which outliers or other erroneous data
could impact training. We also plan to attempt more aggres-
sive, dynamic search trajectories through smaller piecemeal
subsets of the training data to accelerate the discovery of
anomalous data.
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